metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Ming-Jin Xie, Yan-Shi Ping,* Liao-Dai Zheng, Jian-Zong Hui and Chen Peng

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: yansp@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.034 wR factor = 0.098 Data-to-parameter ratio = 13.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

{2-[2-(N,N'-Dimethylamino)ethyliminomethyl]phenolato- $\kappa^3 N, N', O$ }dioxovanadium(V)

Oxovanadium(V) complexes of N,N'-dimethylethylenediamine(salicylaldehyde) have been prepared and characterized. The structure of the title compound, $[VO_2(C_{11}H_{15}N_2O)]$, reveals that the vanadium(V) centre is five-coordinate, with a distorted square-pyramidal environment. Received 7 July 2004 Accepted 5 August 2004 Online 11 September 2004

Comment

The significant role of vanadium in a variety of chemical and biological systems has stimulated the development of vanadium chemistry (Hirao, 1997; Wever & Kustin, 1990; Van de Velde *et al.*, 2000). The interaction of simple vanadium species with ligands having pharmacological activity, particularly those with antitumour and insulin-mimetic properties, is of growing interest. A more detailed physicochemical characterization of vanadium compounds with pharmacologically interesting ligands will help in furthering the inorganic pharmacology of vanadium (Baran, 2000). In the meantime, Schiff base ligands show a wide range of biological activities. We report here a new five-coordinate vanadium(V) complex with the N,N'-dimethylethylenediamine(salicylaldehyde) ligand.

The title complex, (I), consists of a discrete monomeric molecule. The vanadium(V) ion is five-coordinate, in a distorted square-pyramidal environment. The basal square plane is composed of the N,N'-dimethylethylenediamine-(salicylaldehyde) molecule, which acts as a tridentate ligand through its atoms N1 and N2 and the deprotonated phenol atom O1, and oxo ligand O3. The apical position is occupied by a second oxo ligand, O2. The V1-O2 and V1-O3 distances of 1.6097 (19) and 1.622 (2) Å are somewhat longer than the value of 1.585 (7) Å reported for VO(salen) (Bruins & Weaver, 1970; Mokry & Carrano, 1993) complexes but compare well with the values of 1.605(2) and 1.647(2) Å reported by Plass et al. (2000) and Ligtenbarg et al. (1999) for dioxovanadium complexes. The average V-O bond length and O-V-O angle are similar to those reported previously for the cis-VO₂ moiety in other complexes (Melchior et al., 1999). The metal ion lies 0.476 (2) Å from the mean plane of the basal atoms, in the direction of the axial oxo ligand. The τ value for this Schiff base complex is 0.23, indicating a signifi-

 ${\ensuremath{\mathbb C}}$ 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

Molecular view of the title complex, with the atomic labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

cant distortion toward the trigonal bipyramidal form (Cornman et al., 1997).

Experimental

A methanol solution (10 ml) of N_N -dimethylethylenediamine (0.264 g, 3 mmol) was added to a methanol solution (10 ml) of salicylaldehyde (0.366 g, 3 mmol) and the solution was refluxed for 1 h. The ligand was not isolated and the mixture was added to an aqueous solution of NH₄VO₃ (0.35 g, 3 mmol) and Et₃N (0.301 g, 3 mmol). After refluxing for 2 h, the resulting yellow solution was collected. A few days later, deep-yellow crystals suitable for X-ray analysis were obtained.

Crystal data

$[V(C_{11}H_{15}N_2O)O_2]$	$D_x = 1.506 \text{ Mg m}^{-3}$
$M_r = 274.19$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 946
$a = 6.3250 (19) \text{\AA}$	reflections
b = 15.945 (5) Å	$\theta = 3.1 - 25.9^{\circ}$
c = 11.995 (4) Å	$\mu = 0.82 \text{ mm}^{-1}$
$\beta = 90.645 \ (5)^{\circ}$	T = 293 (2) K
V = 1209.6 (7) Å ³	Block, yellow
Z = 4	$0.22 \times 0.20 \times 0.16 \text{ mm}$
Data collection	

2140 independent reflections

 $R_{\rm int} = 0.026$

 $\theta_{\rm max} = 25.0^\circ$

 $h = -7 \rightarrow 7$

 $k = -18 \rightarrow 18$

 $l = -6 \rightarrow 14$

1736 reflections with $I > 2\sigma(I)$

Bruker SMART CCD area-detector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.813, T_{\max} = 0.877$ 6160 measured reflections

Refinement

$w = 1/[\sigma^2(F_o^2) + (0.0574P)^2]$
+ 0.3272P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
$\Delta \rho_{\rm min} = -0.27 \text{ e } \text{\AA}^{-3}$

Table 1				
Selected	geometric parameters	(Å,	°)	

V1-O2	1.6097 (19)	V1-N1	2.138 (2)
V1-O3	1.622 (2)	V1-N2	2.188 (2)
V1-O1	1.9190 (18)		
O2-V1-O3	109.54 (11)	O1-V1-N1	83.72 (7)
O2-V1-O1	105.57 (9)	O2-V1-N2	94.70 (9)
O3-V1-O1	98.07 (9)	O3-V1-N2	88.87 (9)
O2-V1-N1	107.57 (9)	O1-V1-N2	154.78 (8)
O3-V1-N1	140.78 (10)	N1-V1-N2	75.84 (8)
O2-V1-O1-C1	70.1 (2)		
02 11 01 01	/0.1 (2)		

All H atoms were initially located in a difference Fourier map. The methyl H atoms were then constrained to an ideal geometry, with C-H distances of 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$, but each group was allowed to rotate freely about its C-C bond. All other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C-H distances in the range 0.93–0.97 Å and $U_{iso}(H) =$ $1.2U_{eq}(C).$

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1998).

This work was financially supported by the National Science Foundation of China (No. 20171026) and Tianjin Natural Science Foundation (No. 013605811).

References

- Baran, E. J.(2000). J. Inorg. Biochem. 80, 1-10.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Bruins & Weaver (1970). Inorg. Chem. 9, 130-135.
- Bruker (1998). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K.(1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Cornman, C. R., Geisre-Bush, K. M., Rowley, S. R. & Boyle, P. D. (1997). Inorg. Chem. 36, 6401-6408.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hirao, T. (1997). Chem. Rev. 97, 2707-2724.
- Ligtenbarg, A. G. J., Spek, A. L., Hage, R. & Feringa, B. L. (1999). J. Chem. Soc. Dalton. Trans. pp. 659-661.
- Melchior, M., THompson, K. H., Jong, J. M., Rettig, S. J., Shuter, E., Yuen, V. G., Zhou, Y., McNeill, J. H. & Orvig, C. (1999). Inorg. Chem. 38, 2288-2293
- Mokry, L. M. & Carrano, C. J. (1993). Inorg. Chem. 32, 6119-6121.
- PLass, W., Pohlmann, A. & Yozgatli, H. (2000). J. Inorg. Biochem. 80, 181-183. Sheldrick, G. M. (1996). SADABS. Program for Absorption Correction. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

Van de Velde, F., Arends, I. W. & Sheldon, R. A.(2000). J. Inorg. Biochem. 80, 81-89.

Wever, R. & Kustin, K.(1990). Adv. Inorg. Chem. 35, 103-137.